Beta - Beta函數(shù)EllipticModulus - 模數(shù)函數(shù)k(q)GAMMA, lnGAMMA - 完全和不完全Gamma函數(shù)GaussAGM - Gauss 算術(shù)的幾何平均數(shù)JacobiAM, ., - Jacobi 振幅函數(shù)和橢圓函數(shù)JacobiTheta1, JacobiTheta4 - Jacobi theta函數(shù)JacobiZeta - Jacobi 的Zeta函數(shù)KelvinBer, KelvinBei - Kelvin函數(shù)KummerM, - Kummer M函數(shù)和U函數(shù)LambertW - LambertW函數(shù)LerchPhi - 一般的Lerch Phi函數(shù)LommelS1, LommelS2 - Lommel函數(shù)MeijerG - 一個(gè)修正的Meijer G函數(shù)Psi - Digamma 和Polygamma函數(shù)StruveH, StruveL - Struve函數(shù)WeierstrassP - Weierstrass P函數(shù)及其導(dǎo)數(shù)云計(jì)算架構(gòu)的普及使得科學(xué)計(jì)算軟件能夠更加高效地利用計(jì)算資源,降低本地硬件的依賴。長(zhǎng)寧區(qū)購(gòu)買科學(xué)計(jì)算軟件比較
MatrixMatrixMultiply 計(jì)算兩個(gè)矩陣的乘積MatrixVectorMultiply 計(jì)算一個(gè)矩陣和一個(gè)列向量的乘積VectorMatrixMultiply 計(jì)算一個(gè)行向量和一個(gè)矩陣的乘積MatrixPower 矩陣的冪MinimalPolynomial 構(gòu)造矩陣的**小多項(xiàng)式Minor 計(jì)算矩陣的子式Multiply 矩陣相乘Norm 計(jì)算矩陣或向量的p-范數(shù)MatrixNorm 計(jì)算矩陣的p-范數(shù)VectorNorm 計(jì)算向量的p-范數(shù)Normalize 向量正規(guī)化NullSpace 計(jì)算矩陣的零度零空間OuterProductMatrix 兩個(gè)向量的外積Permanent 方陣的不變量Pivot 矩陣元素的主元消去法PopovForm Popov 正規(guī)型上海智能科學(xué)計(jì)算軟件設(shè)計(jì)C和C++則廣泛應(yīng)用于計(jì)算機(jī)圖形學(xué)、游戲開發(fā)、科學(xué)模擬等多個(gè)領(lǐng)域。
★ Maple - CAD系統(tǒng)雙向連接:通過CAD Link為CAD系統(tǒng)增加重要的分析功能,如統(tǒng)計(jì)、優(yōu)化、單位和公差計(jì)算等,結(jié)果在CAD模型中自動(dòng)更新,支持SolidWorks,NX,和 Autodesk Inventor?!顴xcel:Excel數(shù)據(jù)的輸入和輸出;通過加載項(xiàng),在Excel內(nèi)使用Maple計(jì)**令?!?專業(yè)出版工具包括文件處理工具,可輸出Maple文件為PDF、HTML、XML、Word、LaTeX、和MathML格式文件?!?數(shù)據(jù)庫(kù):對(duì)大型數(shù)據(jù)集完成分析和可視化?!颩ATLAB連接:您可以使用MATLAB Link在Maple中調(diào)用MATLAB完成計(jì)算,以及利用MATLAB代碼生成和轉(zhuǎn)換的功能;另一個(gè)選擇是Maple Toolbox for Matlab工具箱,Maple-Matlab雙向連接,共享數(shù)據(jù)、變量等。
student[changevar] - 變量代換dawson - Dawson 積分ellipsoid - 橢球體的表面積evalf(int) - 數(shù)值積分intat, Intat - 在一個(gè)點(diǎn)上積分求值第10章 微分方程10.1 微分方程分類odeadvisor - ODE-求解分析器DESol - 表示微分方程解的數(shù)據(jù)結(jié)構(gòu)pdetest - 測(cè)試pdsolve 能找到的偏微分方程(PDEs)解10.2 常微分方程求解solve - 求解常微方程 (ODE)dsolve - 用給定的初始條件求解ODE 問題dsolve/inttrans - 用積分變換方法求解常微分方程dsolve/numeric - 常微方程數(shù)值解dsolve/piecewise - 帶分段系數(shù)的常微方程求解dsolve - 尋找ODE 問題的級(jí)數(shù)解簡(jiǎn)介:這些是高級(jí)編程語(yǔ)言,也常用于科學(xué)計(jì)算。
強(qiáng)大的求解器★ 內(nèi)置超過5000個(gè)符號(hào)和數(shù)值計(jì)**令,覆蓋幾乎所有的數(shù)學(xué)領(lǐng)域,如微積分,線性代數(shù),方程求解,積分和離散變換,概率論和數(shù)理統(tǒng)計(jì),物理,圖論,張量分析,微分和解析幾何,金融數(shù)學(xué),矩陣計(jì)算,線性規(guī)劃,組合數(shù)學(xué),矢量分析,抽象代數(shù),泛函分析,數(shù)論,復(fù)分析和實(shí)分析,抽象代數(shù),級(jí)數(shù)和積分變換,特殊函數(shù),編碼和密碼理論,優(yōu)化等。★ 各種工程計(jì)算:優(yōu)化,統(tǒng)計(jì)過程控制,靈敏度分析,動(dòng)力系統(tǒng)設(shè)計(jì),小波分析,信號(hào)處理,控制器設(shè)計(jì),集總參數(shù)分析和建模,各種工程圖形等。類軟件通常具備強(qiáng)大的數(shù)值計(jì)算能力,能夠處理包括微分方程、積分方程在內(nèi)的各種數(shù)學(xué)模型。楊浦區(qū)怎樣科學(xué)計(jì)算軟件24小時(shí)服務(wù)
選擇適合自己需求的科學(xué)計(jì)算軟件,可以提高工作效率和成果質(zhì)量。長(zhǎng)寧區(qū)購(gòu)買科學(xué)計(jì)算軟件比較
JordanBlockMatrix 構(gòu)造約當(dāng)塊矩陣JordanForm 將矩陣約化為約當(dāng)型KroneckerProduct 構(gòu)造兩個(gè)矩陣的 Kronecker 張量積LeastSquares 方程的**小二乘解LinearSolve 求解線性方程組 A . x = bLUDecomposition 計(jì)算矩陣的 Cholesky,PLU 或 PLU1R 分解Map 將一個(gè)程序映射到一個(gè)表達(dá)式上,對(duì)矩陣和向量在原位置上進(jìn)行處理MatrixAdd 計(jì)算兩個(gè)矩陣的線性組合VectorAdd 計(jì)算兩個(gè)向量的線性組合MatrixExponential 確定一個(gè)矩陣 A 的矩陣指數(shù) exp(A)MatrixFunction 確定方陣 A 的函數(shù) F(A)MatrixInverse 計(jì)算方陣的逆或矩陣的 Moore-Penrose 偽逆長(zhǎng)寧區(qū)購(gòu)買科學(xué)計(jì)算軟件比較
甘茨軟件科技(上海)有限公司在同行業(yè)領(lǐng)域中,一直處在一個(gè)不斷銳意進(jìn)取,不斷制造創(chuàng)新的市場(chǎng)高度,多年以來(lái)致力于發(fā)展富有創(chuàng)新價(jià)值理念的產(chǎn)品標(biāo)準(zhǔn),在上海市等地區(qū)的數(shù)碼、電腦中始終保持良好的商業(yè)口碑,成績(jī)讓我們喜悅,但不會(huì)讓我們止步,殘酷的市場(chǎng)磨煉了我們堅(jiān)強(qiáng)不屈的意志,和諧溫馨的工作環(huán)境,富有營(yíng)養(yǎng)的公司土壤滋養(yǎng)著我們不斷開拓創(chuàng)新,勇于進(jìn)取的無(wú)限潛力,甘茨軟件供應(yīng)攜手大家一起走向共同輝煌的未來(lái),回首過去,我們不會(huì)因?yàn)槿〉昧艘稽c(diǎn)點(diǎn)成績(jī)而沾沾自喜,相反的是面對(duì)競(jìng)爭(zhēng)越來(lái)越激烈的市場(chǎng)氛圍,我們更要明確自己的不足,做好迎接新挑戰(zhàn)的準(zhǔn)備,要不畏困難,激流勇進(jìn),以一個(gè)更嶄新的精神面貌迎接大家,共同走向輝煌回來(lái)!