Dimension 行數(shù)和列數(shù)DotProduct 點(diǎn)積BilinearForm 向量的雙線性形式EigenConditionNumbers 計(jì)算數(shù)值特征值制約問(wèn)題的特征值或特征向量的條件數(shù)Eigenvalues 計(jì)算矩陣的特征值Eigenvectors 計(jì)算矩陣的特征向量Equal 比較兩個(gè)向量或矩陣是否相等ForwardSubstitute 求解 A . X = B,其中 A 為下三角型行階梯矩陣FrobeniusForm 將一個(gè)方陣約化為 Frobenius 型(有理標(biāo)準(zhǔn)型)GaussianElimination 對(duì)矩陣作高斯消元ReducedRowEchelonForm 對(duì)矩陣作高斯-約當(dāng)消元GetResultDataType 返回矩陣或向量運(yùn)算的結(jié)果數(shù)據(jù)類(lèi)型選擇適合自己需求的科學(xué)計(jì)算軟件,可以提高工作效率和成果質(zhì)量。寶山區(qū)智能科學(xué)計(jì)算軟件設(shè)計(jì)
Maple [2]不僅*提供編程工具,更重要的是提供數(shù)學(xué)知識(shí)。Maple [3]是教授、研究員、科學(xué)家、工程師、學(xué)生們必備的科學(xué)計(jì)算工具,從簡(jiǎn)單的數(shù)字計(jì)算到高度復(fù)雜的非線性問(wèn)題,Maple都可以幫助您快速、高效地解決問(wèn)題。用戶通過(guò)Maple [4]產(chǎn)品可以在單一的環(huán)境中完成多領(lǐng)域物理系統(tǒng)建模和仿真、符號(hào)計(jì)算、數(shù)值計(jì)算、程序設(shè)計(jì)、技術(shù)文件、報(bào)告演示、算法開(kāi)發(fā)、外部程序連接等功能,滿足各個(gè)層次用戶的需要,從高中學(xué)生到高級(jí)研究人員。Maple、Mathematica和MATLAB并稱(chēng)為三大數(shù)學(xué)軟件。寶山區(qū)智能科學(xué)計(jì)算軟件設(shè)計(jì)它能夠處理復(fù)雜的數(shù)學(xué)計(jì)算問(wèn)題,還能輔助科學(xué)研究、工程設(shè)計(jì)以及教育等多個(gè)領(lǐng)域的發(fā)展。
MatrixMatrixMultiply 計(jì)算兩個(gè)矩陣的乘積MatrixVectorMultiply 計(jì)算一個(gè)矩陣和一個(gè)列向量的乘積VectorMatrixMultiply 計(jì)算一個(gè)行向量和一個(gè)矩陣的乘積MatrixPower 矩陣的冪MinimalPolynomial 構(gòu)造矩陣的**小多項(xiàng)式Minor 計(jì)算矩陣的子式Multiply 矩陣相乘Norm 計(jì)算矩陣或向量的p-范數(shù)MatrixNorm 計(jì)算矩陣的p-范數(shù)VectorNorm 計(jì)算向量的p-范數(shù)Normalize 向量正規(guī)化NullSpace 計(jì)算矩陣的零度零空間OuterProductMatrix 兩個(gè)向量的外積Permanent 方陣的不變量Pivot 矩陣元素的主元消去法PopovForm Popov 正規(guī)型
《Maple 指令》7.0版本第1章 章數(shù)1.1 復(fù)數(shù)Re,Im - 返回復(fù)數(shù)型表達(dá)式的實(shí)部/虛部abs -***值函數(shù)argument - 復(fù)數(shù)的幅角函數(shù)conjugate - 返回共軛復(fù)數(shù)csgn - 實(shí)數(shù)和復(fù)數(shù)表達(dá)式的符號(hào)函數(shù)signum - 實(shí)數(shù)和復(fù)數(shù)表達(dá)式的sign 函數(shù)51.2 MAPLE 常數(shù)已知的變量名稱(chēng)指數(shù)常數(shù)(以自然對(duì)數(shù)為底)I - x^2 = -1 的根infinity 無(wú)窮大1.3 整數(shù)函數(shù)! - 階乘函數(shù)irem, iquo - 整數(shù)的余數(shù)/商isprime - 素?cái)?shù)測(cè)試isqrfree - 無(wú)整數(shù)平方的因數(shù)分解max, min - 數(shù)的最大值/最小值mod, modp, mods - 計(jì)算對(duì) m 的整數(shù)模rand - 隨機(jī)數(shù)生成器randomize - 重置隨機(jī)數(shù)生成器在醫(yī)學(xué)圖像處理領(lǐng)域,軟件能夠輔助醫(yī)生進(jìn)行病灶檢測(cè)、手術(shù)規(guī)劃等,提高醫(yī)療服務(wù)的質(zhì)量和效率。
GetResultShape 返回矩陣或向量運(yùn)算的結(jié)果形狀GivensRotationMatrix 構(gòu)造 Givens 旋轉(zhuǎn)的矩陣GramSchmidt 計(jì)算一個(gè)正交向量集HankelMatrix 構(gòu)造一個(gè) Hankel 矩陣HermiteForm 計(jì)算一個(gè)矩陣的 Hermite 正規(guī)型HessenbergForm 將一個(gè)方陣約化為上 Hessenberg 型HilbertMatrix 構(gòu)造廣義 Hilbert 矩陣HouseholderMatrix 構(gòu)造 Householder 反射矩陣IdentityMatrix 構(gòu)造一個(gè)單位矩陣IsDefinite 檢驗(yàn)矩陣的正定性,負(fù)定性或不定性IsOrthogonal 檢驗(yàn)矩陣是否正交IsUnitary 檢驗(yàn)矩陣是否為酉矩陣IsSimilar 確定兩個(gè)矩陣是否相似Julia:一種高性能的編程語(yǔ)言,專(zhuān)為科學(xué)計(jì)算而設(shè)計(jì),具有良好的性能和易用性。崇明區(qū)定制科學(xué)計(jì)算軟件服務(wù)電話
它們提供了強(qiáng)大的數(shù)值計(jì)算能力和靈活的編程接口,可以滿足各種復(fù)雜的計(jì)算需求。寶山區(qū)智能科學(xué)計(jì)算軟件設(shè)計(jì)
CharacteristicPolynomial 構(gòu)造矩陣的特征多項(xiàng)式CompanionMatrix 構(gòu)造一個(gè)首一(或非首一)多項(xiàng)式或矩陣多項(xiàng)式的友矩陣(束)ConditionNumber 計(jì)算矩陣關(guān)于某范數(shù)的條件數(shù)ConstantMatrix 構(gòu)造常數(shù)矩陣ConstantVector 構(gòu)造常數(shù)向量Copy 構(gòu)造矩陣或向量的一份復(fù)制CreatePermutation 將一個(gè) NAG 主元向量轉(zhuǎn)換為一個(gè)置換向量或矩陣CrossProduct 向量的叉積`&x` 向量的叉積DeleteRow 刪除矩陣的行DeleteColumn刪除矩陣的列Determinant 行列式Diagonal 返回從矩陣中得到的向量序列DiagonalMatrix 構(gòu)造(分塊)對(duì)角矩陣寶山區(qū)智能科學(xué)計(jì)算軟件設(shè)計(jì)
甘茨軟件科技(上海)有限公司匯集了大量的優(yōu)秀人才,集企業(yè)奇思,創(chuàng)經(jīng)濟(jì)奇跡,一群有夢(mèng)想有朝氣的團(tuán)隊(duì)不斷在前進(jìn)的道路上開(kāi)創(chuàng)新天地,繪畫(huà)新藍(lán)圖,在上海市等地區(qū)的數(shù)碼、電腦中始終保持良好的信譽(yù),信奉著“爭(zhēng)取每一個(gè)客戶不容易,失去每一個(gè)用戶很簡(jiǎn)單”的理念,市場(chǎng)是企業(yè)的方向,質(zhì)量是企業(yè)的生命,在公司有效方針的領(lǐng)導(dǎo)下,全體上下,團(tuán)結(jié)一致,共同進(jìn)退,**協(xié)力把各方面工作做得更好,努力開(kāi)創(chuàng)工作的新局面,公司的新高度,未來(lái)甘茨軟件供應(yīng)和您一起奔向更美好的未來(lái),即使現(xiàn)在有一點(diǎn)小小的成績(jī),也不足以驕傲,過(guò)去的種種都已成為昨日我們只有總結(jié)經(jīng)驗(yàn),才能繼續(xù)上路,讓我們一起點(diǎn)燃新的希望,放飛新的夢(mèng)想!